首页> 外文OA文献 >A Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning
【2h】

A Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning

机译:传统零射击,广义零射击和传统的统一方法   少数学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Prevalent techniques in zero-shot learning do not generalize well to otherrelated problem scenarios. Here, we present a unified approach for conventionalzero-shot, generalized zero-shot and few-shot learning problems. Our approachis based on a novel Class Adapting Principal Directions (CAPD) concept thatallows multiple embeddings of image features into a semantic space. Given animage, our method produces one principal direction for each seen class. Then,it learns how to combine these directions to obtain the principal direction foreach unseen class such that the CAPD of the test image is aligned with thesemantic embedding of the true class, and opposite to the other classes. Thisallows efficient and class-adaptive information transfer from seen to unseenclasses. In addition, we propose an automatic process for selection of the mostuseful seen classes for each unseen class to achieve robustness in zero-shotlearning. Our method can update the unseen CAPD taking the advantages of fewunseen images to work in a few-shot learning scenario. Furthermore, our methodcan generalize the seen CAPDs by estimating seen-unseen diversity thatsignificantly improves the performance of generalized zero-shot learning. Ourextensive evaluations demonstrate that the proposed approach consistentlyachieves superior performance in zero-shot, generalized zero-shot andfew/one-shot learning problems.
机译:零击学习中的流行技术不能很好地推广到其他相关的问题场景。在这里,我们为传统的零镜头,广义零镜头和少镜头学习问题提供了一种统一的方法。我们的方法基于一种新颖的类自适应主方向(CAPD)概念,该概念允许将多个图像特征嵌入语义空间。给定一个图像,我们的方法为每个可见的类产生一个主要方向。然后,它学习如何组合这些方向以获得每个未见类别的主要方向,以使测试图像的CAPD与真实类别的这些语义嵌入对齐,并与其他类别相反。这允许从可见的类到看不见的类进行有效的和类自适应的信息传输。另外,我们提出了一个自动过程,用于为每个看不见的类选择最有用的见类,以实现零击学习中的鲁棒性。我们的方法可以利用少量看不见的图像的优势来更新看不见的CAPD,从而在几次镜头学习中发挥作用。此外,我们的方法可以通过估计看不见的多样性来概括可见的CAPD,从而显着提高广义零击学习的性能。我们广泛的评估表明,所提出的方法在零发,广义零发和少/单发学习问题中始终具有优异的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号